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It is shown that dynamical correlation effects can be adequately treated using 
the local spin-density approximation. The computational effort is very small 
compared to CI calculations. The method is applied to correlation energies and 
ionization potentials of the atoms Li to Ar and binding energies of the diatomic 
hydrides LiH to HC1. 
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1. Introduction 

The theorem of Hohenberg, Kohn and Sham (HKS) [1, 2] states that the ground- 
state energy E of a N-electron system is a functional of the charge densities p + (r), 
p_ (r) of electrons with spin + and spin - .  (The HKS theorem also applies to the 
lowest excited state of each symmetry type, as has been shown by Gunnarsson and 
Lundqvist [3].) Varying E with respect to the densities p+, p_ leads to the HKS 
equations, which are-similarly to the Hartree-Fock (HF) equations-formally 
independent-particle equations; in contrast to the HF equations, however, they 
yield, at least in principle, the exact energy E and the exact charge densities 

p + , P - .  

The exchange-correlation part of the energy functional has to be approximated 
because it is unknown; usually the local spin-density (LSD) approximation is 
employed. This means that the exchange-correlation energy per particle becomes a 
function of p+ and p_, which can be derived from that of the homogeneous spin- 
polarized electron liquid. Although for molecules the charge densities are rather 
inhomogeneous, the LSD approximation gives surprisingly good results. This has 
been demonstrated for a number of small molecules by Gunnarsson, Johansson 
and Lundqvist [3, 4] and by Harris and Jones [5]. The usefulness of the LSD 
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approximation is mainly due to the fact that only the spherical average of the 
exchange-correlation hole is important for the total energy [3]. 

Two problems arise, however, in connection with the LSD approximation. 

Firstly, the local exchange-correlation potential yields exchange energies which are 
about 10~ small in magnitude while the correlation energies are too large by a 
factor of about 2 [6]. While these errors partially balance each other for weakly 
bound valence electrons, this is no longer the case for more tightly bound core 
electrons. 

Secondly, the local exchange-correlation potential depends on p+, p_ in a rather 
complicated way and integrals over the exchange-correlation potential cannot be 
evaluated analytically. While this is no marked disadvantage e.g. in the LMTO 
method [5], it is a major drawback in the LCAO method, which is commonly used 
in quantum chemistry. In the present paper we deal with these two problems. 

2. The Method 

As an alternative to the HKS scheme, Berrondo and Goscinski [7] have pointed 
out that the variational principle for the ground state energy E can be based on the 
full one-particle density matrix: 

i 

((&:natural spin orbitals) 

If the energy functional is minimized with respect to (pi, then independent-particle 
equations result for the (p~, which are analogous to those of HKS. In contrast to the 
HKS scheme, however, non-local terms involving non-diagonal elements of p 
(such as kinetic energy and non-local HF exchange) can easily be taken into 
account. Here it is only the correlation functional, for which an approximation 
has to be introduced. It should be mentioned that a HF treatment of exchange 
effects has already been considered in the early paper of Kohn and Sham [2], but 
has been abandoned by these authors because of the non-locality of the HF 
exchange. 

We would like to stress here that in the LCAO method no computational simpli- 
fications arise if the non-local HF exchange is replaced by a local potential. If the 
HF exchange is used, however, two simplifications occur, which are caused by the 
small magnitude of the correlation energy compared to the HF energy: 

1) If the differences between the exact and the HF one-particle density matrix can 
be neglected, the correlation potential may be omitted in the iteration process. 
Only one numerical integration has to be performed at the end of the calculation 
when evaluating the correlation part of the total energy. 

2) If improvement of the HF density is required, n 2 numerical integrations have to 
be performed for each iteration step (n: number of basis functions), but a 
rather rough point grid is sufficient, because the matrix elements are in general 
very small compared to the Fock-matrix elements. 
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The question remains as to which approximation should be used for the correlation 
functional. At the first glance, the LSD approximation seems to be totally inade- 
quate; as already mentioned, it yields correlation energies which are too large by a 
factor of 2. The present authors have recently shown, however, that LSD approxi- 
mation gives reasonable results for the correlation contribution to binding energies 
[81. This is due to the fact that in this case differences of correlation energies are 
involved for states with the same number of electrons and relatively small and 
slowly varying density differences. 

The reason for the large absolute magnitude of the LSD correlation energies 
becomes evident from the discussion of the Fermi hole of the homogeneous electron 
liquid in the HF approximation. The pair distribution function g+(r, r') for elec- 
trons with spin _+ is [9]: 

g+(r, r')= l -  9 (sin kr-kr c~ k'i) 

with kr= \ ~ - j  

g+(r, r') exhibits an unusual long-range oscillatory behaviour, From physical 
arguments [9], 9• r') should be a smooth function of l r -r ' l ,  approaching 1 
exponentially with increasing Iv-r '  I. While this is usually fulfilled in HF calcula- 
tions for finite systems (molecules), it is clearly not the case for the homogeneous 
electron liquid. The conclusion may be drawn that a large part of the correlation 
energy of the electron liquid represents a correction for the deficiencies of the 
Fermi hole (2), while this correction should be rather small for molecules. We feel 
that this is the reason why the LSD expression overestimates correlation in 
molecules. 

We suggest therefore that the LSD approximation should only be used for the 
description of the Coulomb hole in molecules. This means that the correlation 
energy E c is calculated in the following way: 

Ec~ f (p+ +p_)sc(p+, p_) dz 

- fp+a~(p+, O) dz (3) 

- fp_e (o, p_) dr 

Here e~(p+, p_) is the correlation energy per article of an electron liquid with 
constant densities p+, p_. The first term in (3) is the full LSD approximation for 
E~. This term is corrected by the second and the third term which are the electron- 
liquid expressions for the correlation energies of the pure spin systems. The latter 
terms consequently represent the "Fermi part" of the correlation in the electron 
liquid. We stress that in the approximation (3) for Ec only correlation between 
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orbitals of different spin is incorporated, but this should be in many cases the major 
part of the correlation energies, as has been indicated by Roos and Siegbahn [10]. 

In our calculations, which we have done so far, we have neglected the influence of 
the correlation functional on the natural orbitals, i.e. we have used UHF orbitals 
to build up the charge densities p+, p_ which have to be inserted in (3). For 
ec(P § P-), we employ the analytic fit given by Gunnarsson and Lundqvist for the 
spin-polarized electron liquid [3]. In order to evaluate (3) we make a partitioning 
of p+, p_ with respect to the nuclei i; we then integrate in spherical coordinates. 

Ec~ ; ~ p+i(sc(p+, p_)-s~(p+,  0))r 2 dr i dr2, 
g 

(4) f, 
§ ,2j ;_))r: dri d O  i 

We average p _+ in ec over f2~ analytically 

= I P + _ , P + _ d ~  
~c(P+, P - ) ~  ~(fi+, fi-) with fi+_ ,1 P+_i dfgi (5) 

(The averaging procedure is exact if e~ is linear in p +, p_.) For the numerical 
integration over r~ we use 40 points, starting from r~, o = 0 and putting r~, k+ ~ - r~, k = 
(1.2) k 0.01. The computational effort for this procedure is ~ n 2 (n :number of basis 
functions). 

3. Results 

We have used two different basis sets in our calculations. The basis sets a) are those 
of Roos and Siegbahn [11] (3s for H, 7s /3p  for the first and 10s/6p for the second 
row); the basis sets b) have been given by Dunning and Hay [12] (4s ) / [2s]  for H, 
( 9 s / 5 p ) / [ 3 s / 2 p ]  for the first and (1 l s / T p ) / [ 6 s / 4 p ]  for the second row). For the dia- 
tomic molecules the Dunning basis sets have been augmented by sp sets in the bond 
midpoint as described in [12]. 

Table 1 shows SCF and correlation energies for the atoms Li to At. The results are 
compared with values of Clementi and Veillard [13]. With the exception of the 
small atoms Li to C, the correlation energies are consistently too small by about 5 to 
10%, a systematic error, which is due to the neglect of correlation between electrons 
of equal spin. We note that the differences in E c between the basis sets a) and b) are 

10- 3 a.u., while the SCF energies exhibit differences up to 10-1 a.u. This means 
that, in contrast to CI calculations, relatively small basis sets are sufficient to 
evaluate correlation energies in the approximation (3). The reason is, of course, 
that the HF charge densities are not very sensitive with regard to basis-set changes. 

In Table 2 ionization energies are given for the atoms Li to Ar. They are evaluated 
as differences of the total energies of the atoms and the corresponding positive ions. 
Our results are compared with ASCF values, with the results of Gunnarsson and 
Lundqvist [3], who use the LSD approximation for both correlation and exchange, 
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and with experimental values. While LSD often yields ionization energies which 
are not very different in quality from ASCF, we obtain a consistently better agree- 
ment with experiment. 

Table 3 gives SCF and correlation contributions to the binding energies ofdiatomic 
hydrides. Our values are compared to SCF results and to PNO-CI-CEPA results 

Table 1. SCF and correlation energies for atoms calculated with basis sets a) and b). c) values given by 

Clementi [13]. All values in a.u. 

ESCF E~ 
a) b) c) a) b) c) 

Li -7 .429 --7.432 -7.433 -0.063 -0.063 -0.045 
Be -14.567 -14.571 -14.573 -0.100 -0,100 -0.094 
B --24.514 -24.527 --24.529 -0.128 -0.128 -0.124 
C -37.657 -37.686 -37.689 -0.152 -0.152 -0.155 
N -54.342 -54.397 -54.401 -0.173 -0.173 -0.186 
O -74.702 -74.803 -74.809 -0.236 -0.235 -0.254 
F -99.235 -99.395 -99.409 -0.291 -0.290 -0.316 
Ne - 128.283 - 128.547 -0.341 -0.381 
Na - 161.787 - 161.859 - 0.361 - 0.386 
Mg - 199.534 - 199.615 -0 .404 -0.428 
A1 -241.810 -241.855 -241.877 -0.436 -0.436 -0.459 
Si -288.773 -288,829 -288.854 -0.465 -0.465 -0,494 
P -340.629 -340.688 -340.719 -0.492 -0.491 -0,521 
S -397.233 -397.467 -397.505 -0 .55 l  -0.550 -0,595 
C1 -459.357 -459.435 -459.482 -0.603 -0.603 -0.667 
Ar - 526.672 - 526.817 - 0.651 - 0.732 

Table 2. Ionization energies for atoms calculated with basis set a) 
(columns 1 and 3), in comparison to ASCF, to LSD [3] and experimental 
values [14]. All values in a.u. 

ASCF LSD This work Experiment 

Li 0.196 0,199 0.198 0.198 
Be 0.296 0.295 0.325 0.343 
B 0.287 0.292 0.301 0.305 
C 0.392 0.399 0.402 0.414 
N 0.507 0.517 0.515 0.534 
O 0.428 0.439 0.479 0.500 
F 0.560 0.598 0.600 0.640 
Ne 0.703 0.731 0.736 0.792 
Na 0.i80 0.181 0.182 0.189 
Mg 0,242 0.267 0.281 
A1 0.194 0.206 0.220 
Si 0.274 0.283 0.300 
P 0.367 0.374 0.385 
S 0.333 0.373 0.381 
C1 0.432 0.464 0.478 
Ar 0,541 0.546 0.568 0.579 
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Table 3. Contributions A E s c  F and A E  c of SCF and correlation energies to the binding energies of 
diatomic hydrides, calculated with basis sets a) and b). The results are compared c) with SCF values 
from [15] and d) with CEPA results from [15]. In e) differences between experimental binding energies 
(Refs. [42-55] in Ref. [15]) resp. recommended binding energies [15] and the SCF values [15] are 
given. All values in eV. 

AEsc~ aEc 
a) b) c) a) b) d) e) 

LiH 1.42 1.40 1.48 1.00 1.01 1.00 1.04 
Bell 2.02 2.10 2.18 0.54 0.54 0.03 0.07 
BH 2.47 2.49 2.78 0.81 0.78 0.71 0.79 
CH 2.03 2.23 2.47 1.06 1.08 1.00 1.16 
NH 1.52 1.88 2.10 1.30 1.30 1.28 1.30 (1.50) 
OH 2.08 2.66 2.99 1.04 1.05 1.35 1.64 
HF 3.07 3.94 4.32 0.86 0.86 1.51 1.80 
NaH 0.71 0.93 0.99 0.99 1.19 (1.02) 
MgH 0.00 1.15 0.46 0.21 0.95 (0.18) 
A1H 1.98 2.13 2.38 0.88 0.78 0.75 0.63 (0.78) 
Sill 1.96 2.24 1.03 0.85 0.95 
PH 1.80 2.04 1.21 1.00 1.61 (1.13) 
SH 2.28 2.64 0.96 0.91 1.06 (1.08) 
HC1 2.51 3.07 3.49 0.77 0.81 0.94 1.13 

o f  Meyer  a n d  R o s m u s  [15].  The  S C F  c o n t r i b u t i o n s  are aga in  far m o r e  sensi t ive to 

basis-se t  changes  (up to 1 eV) t h a n  the c o r r e l a t i on  c o n t r i b u t i o n  in a p p r o x i m a t i o n  

(3) ( <  0.1 eV). O u r  resul ts  are genera l ly  in sa t i s fac tory  ag reem en t  with those  o f  
Meye r  a n d  R o s m u s .  Excep t ions  are those  molecu les  (e.g. Be l l )  where  the coeffi- 

c ient  o f  the H F  d e t e r m i n a n t  in the CI  e x p a n s i o n  differs subs t an t i a l l y  f rom l ;  in 

these cases the H F  densi t ies  are, o f  course ,  no  val id  s t a r t i n g - p o i n t  for the ca lcula-  

t ion  of  co r r e l a t i o n  energies.  I f  n o n - d y n a m i c a l  c o r r e l a t i o n  has to be t a k e n  in to  

accoun t ,  the co r r e l a t i o n  p o t en t i a l  has to be  i n t r o d u c e d  in to  the  i t e ra t ion  process  for 
the d e t e r m i n a t i o n  of  the one -pa r t i c l e  dens i ty  ma t r ix ,  and  n o n - i n t e g e r  o c c u p a t i o n  

n u m b e r s  shou ld  be a l lowed  for in  (1), 
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